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Linear Programming
(3 hrs - Tue, Apr 16, 2024)

1.1 Introductory Examples
1.1.1 A production problem. Each week, a food industry produces 2 types of
flour:

• x1 is the quantity (in a given weight unit) of type 1 flour produced per week
• x2 is the quantity (in a given weight unit) of type 2 flour produced per week

x1 and x2 can be any non-negative, possibly decimal, number since they can sell
all the flour that is produced. The profit for each x1 is 3 and that for each x2 is 5.

Flour is manufactured in three plants which have different capacities per week.

• Plant 1 has 3 hrs available
• Plant 2 has 21 hrs available
• Plant 3 has 25 hrs available

• The production of each x1 uses 6 hours of Plant 2, and 3 hours of Plant 3
• The production of each x2 uses 1 hour of Plant 1, 2 hours of Plant 2, and 7

hours of Plant 3

The goal of the company is to maximize z = 3x1 + 5x2. Summarizing:

max z = 3x1 + 5x2,

x1, x2 ∈ R
subject to

x2 ≤ 3 (P1: used hrs less than avail. hrs)

6x1 + 2x2 ≤ 21 (P2: used hrs less than avail. hrs)

3x1 + 7x2 ≤ 25 (P3: used hrs less than avail. hrs)

x1 ≥ 0

x2 ≥ 0

1
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3x1 + 7x2 = 25

6x1 + 2x2 = 21

x2 = 3

3x1 + 5x2 = 20.16

(2.69, 2.42)

x1

x2

Figure 1.1. Feasible region and optimal value.

The optimal solution is x∗
1 = 97/36 ≈ 2.69, x∗

2 = 29/12 ≈ 2.42. At (x1∗, x∗
2) we

have:

3 · 97
36

+ 5 · 29
12

≈ 20.16

subject to

97/36 ≤ 3 (P1: hrs available: NOT BINDING)

21 ≤ 21 (P2: full capacity: BINDING)

25 ≤ 25 (P3: full capacity: BINDING)

1.1.2 A mix problem. For a healthy life, every day we must get a minimum quan-
tity of certain substances (vitamins, fats, fiber, etc.) contained in some ingredients
(flour, sugar, milk, etc.) that contain the substances in various proportions.

To simplify things, consider just two ingredients and two substances. One unit
of ingredient I1 contains 7 units of substance A and 2 units of substance B. One
unit of ingredient I2 contains 2 units of substance A and 12 units of substance B.
Every day, at least 28 units of A and 24 of B are required.

One unit of ingredient I1 costs 5 and one of I2 costs 10. We want to get at
least the minimum of both substances paying the minimum cost.

• x1 is the quantity of ingredient 1
• x2 is the quantity of ingredient 2

Summarizing:

min 5x1 + 10x2

subject to
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7x1 + 2x2 = 28 6x1 + 2x2 = 21

5x1 + 10x2 = 15.8

(3.6, 1.4)

x1

x2

Figure 1.2. Feasible region and optimal value.

7x1 + 2x2 ≥ 28 (min req. for subst. A)

2x1 + 12x2 ≥ 24 (min req. for subst. B)

x1 ≥ 0

x2 ≥ 0

and the minimum is 15.8 attained at (3.6, 1.4).

1.1.3 The production problem, revisited. Suppose that, in the first produc-
tion problem, x1 and x2 are quantities of barrels of flour. A barrel is the common
measure for the flour market (a barrel equals 196 pounds). In this case, x1 and x2

can’t take decimal values and their domain is instead restricted to the non-negative
integeres. The problem then becomes

max 3x1 + 5x2,

x1, x2 ∈ N
subject to

x2 ≤ 3 (P1: used hrs less than avail. hrs)

6x1 + 2x2 ≤ 21 (P2: used hrs less than avail. hrs)

3x1 + 7x2 ≤ 25 (P3: used hrs less than avail. hrs)

x1 ≥ 0

x2 ≥ 0
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3x1 + 7x2 = 25

6x1 + 2x2 = 21

x2 = 3

3x1 + 5x2 = 18

(1, 3)

x1

x2

Figure 1.3. Feasible region and optimal value in
Integer Problem.

and the analytical geometry technique does not work anymore. In this simple case
we can actually examine all the feasible solutions, the points with integer coordi-
nates in the feasible set found for the first case. The optimal solution is found to
be (1, 3) with a value of 18 for the profit. What is remarkable is that the integer
optimal solution is “far” from the non-integer optimal solution (2.69, 2.42): approz-
imating the non-integer solution gives (3, 2), which is non-feasible. Truncating the
non-integer solution gives a feasible solution which is not optimal.

1.2 Formalization
The problems in the previous lecture share some features.

1.2.1 Names. In the models, a choice of the value for the variables represents a
decision about an activity to be done. For historical reasons, this is called “pro-
gramming”, in the sense of planning, and these problems are called programming
problems. Accordingly, the variables are called decision variables. Sometimes,
the problem itself is called “program”.

1.2.2 Variables. The modeling dictates the type of variables to use in the prob-
lem. When, in the units considered in the problem, decimal numbers are legal
values, the model uses real numbers. Otherwise, integers or even binary numbers
are used.

1.2.3 Constraints. In general, variables cannot take any value in their domain.
Very often, variables are restricted in sign and can only take non-negative

values. In addition there are further requirements on the values taken by the
variables, written in terms of equations and inequalities. All these equations and
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inequalities are collectively called constraints. The set of all values the decision
variables can take that satisfy all the constraints is called the feasible set. In other
words, the feasible set is the solution set to the system of the constraints.

All inequalities are in the weak (≤ or ≥) form. If the constraints are continuous
(which is almost always the case), the feasible set is a closed region of Rn.

The presence of constraints justifies the term constrained programming
problems. However, the true distinction between the two categorizes lies in the
fact that the domain of the variables is closed (constrained) rather than open (un-
constrained). Essentially, in the second case necessary first order and second order
conditions apply (like f ′ = 0) while in the first they do not.

1.2.4 Objective. The solution to every problem is “optimal”, in the sense that
it is the minimum value or the maximum value of a given function. The function
to be maximized or minimized is called objective function and the process of
finding the extreme value is called “optimization”. Therefore, problems like these
are collectively called constrained optimization problems.

1.2.5 Linearity. What has been said above is a very general framework. Here,
we deal with a subclass of problems, namely those where all the functions in the
model are linear in the decision variables.

The problems with only real variables are called linear programming, LP,
problems. The problems where variables are integers are called integer program-
ming. IP, problems.

The two types of problem are related because, when the formulation of the
problem is the same, the feasible set for the IP problem is a subset of that for the LP
problem. Given an IP problem, the corresponding LP problem where the constraint
about the integer variables is removed, is called “relaxation”. The algorithms for
IP problems are not the same as those for LP problems and are beyond the scope
of these notes.

1.3 Standard form of an LP problem.
The two (non-integer) LP problems in the previous section have these forms:

max cTx

subject to

Ax ≤ b

x ≥ 0

or

min cTx

subject to

Ax ≥ b

x ≥ 0

However, it can be proved that both forms, together with other forms, can be
manipulated to get to the following standard form:

min /max cTx

subject to

Ax = b

x ≥ 0

The transformation into the standard form uses the following remarks:

• every inequality can be transformed into an equation by adding a “slack” or
“surplus” variable
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• if a variable xi is unrestricted in sign then we can add two non-negative variables
x′
i and x′′

i and set xi = x′
i − x′′

i .

Definition 1.1. Pick a subset of the inequalities. If there is a unique point that
satisfies them with equality, and this point happens to be feasible, then it is a
vertex. ♢

Remark 1.2. Each vertex is specified by a set of n (in)equalities.

Definition 1.3. Two vertices are neighbors if they have n−1 defining (in)equalities
in common. ♢

Under sufficiently general hypotheses, one can prove the following theorem.

Theorem 1.4. Given an LP problem, if there exists an optimal solution, there also
exists an optimal solution which is at a vertex of the feasible set.

Then, given the LP problem

min /max cTx

subject to

Ax = b

x ≥ 0

A ∈ Rm×n,b ∈ Rm,x ∈ Rn,

we have m equalities from the matrix A, and n equalities from the non-negativity
constraints. Overall, we have m + n equalities. Ax = b has a solution only if
rank(A) = n.

A brute-force approach would be the following.

(1) pick all possible subsets of n linearly independent constraints out of the m+ n
constraints

(2) Solve (in worst case)
(
m+n
n

)
systems of equations of the type A∗x = b∗ where

A∗,b∗ are the restrictions of A and b to the subset of n constraints. This can
be done, for example, by Gaussian elimination

(3) Check feasibility of all solutions, evaluate the objective function at each solu-
tion, and pick the best.

This algorithm is correct but inefficient because(
m+ n

n

)
≤

m+n∑
k=0

(
m+ n

k

)
= 2m+n,

that is, with respect to n, (
m+ n

n

)
= O (2n)

Example 1.5. The problem is

max z = 2x1 + 4x2

subject to
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x1 ≤ 50

x2 ≤ 80

x1 + x2 ≤ 100

x1 ≥ 0

x2 ≥ 0

and there five constraints. Turning all of them into equations we get

x1 = 50

x2 = 80

x1 + x2 = 100

x1 = 0

x2 = 0.

To find all vertices we need to pick two equations out of the five and solve the
simultaneously. There are

(
5
2

)
= 10 ways to pick two elements out of a set of five

and these get {
x1 = 50

x2 = 80

{
x1 = 50

x1 + x2 = 100

{
x1 = 50

x1 = 0

{
x1 = 50

x2 = 0.{
x2 = 80

x1 + x2 = 100

{
x2 = 80

x1 = 0

{
x2 = 80

x2 = 0.

{
x1 + x2 = 100

x1 = 0{
x1 + x2 = 100

x2 = 0.

{
x1 = 0

x2 = 0.

whose solutions are, respectively,{
x1 = 50

x2 = 80
not feasible

{
x1 = 50

x2 = 50
z = 300

{
x1 = 50

x1 = 0
no solution

{
x1 = 50

x2 = 0.
z = 100

{
x2 = 80

x1 = 20
z = 360

{
x2 = 80

x1 = 0
z = 320

{
x2 = 80

x2 = 0.
no solution

{
x2 = 100

x1 = 0
not feasible

{
x1 = 100

x2 = 0
not feasible

{
x1 = 0

x2 = 0.
z = 0

△

1.4 Exercises
Exercise 1.4.1 (DPV 7.2). Duckwheat is produced in Kansas and Mexico and
consumed in New York and California. Kansas produces 15 shnupells of duckwheat
and Mexico 8. Meanwhile, New York consumes 10 shnupells and California 13. The
transportation costs per shnupell are $4 from Mexico to New York, $1 from Mexico
to California, $2 from Kansas to New York, and $3 from Kansas to California.

Write a linear program that decides the amounts of duckwheat (in shnupells
and fractions of a shnupell) to be transported from each producer to each consumer,
so as to minimize the overall transportation cost.
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Exercise 1.4.2 (DPV 7.4). Moe is deciding how much Regular Duff beer and how
much Duff Strong beer to order each week. Regular Duff costs Moe $1 per pint and
he sells it at $2 per pint; Duff Strong costs Moe $1.50 per pint and he sells it at
$3 per pint. However, as part of a complicated marketing scam, the Duff company
will only sell a pint of Duff Strong for each two pints or more of Regular Duff that
Moe buys.

Furthermore, due to past events that are better left untold, Duff will not sell
Moe more than 3,000 pints per week. Moe knows that he can sell however much
beer he has. Formulate a linear program for deciding how much Regular Duff and
how much Duff Strong to buy, so as to maximize Moe’s profit. Solve the program
geometrically.

Exercise 1.4.3 (DPV 7.7). Find necessary and sufficient conditions on the reals
a and b under which the linear program

maxx+ y

subject to

ax+ by ≤ 1

x ≥ 0.

(1) Is infeasible.
(2) Is unbounded.
(3) Has a finite and unique optimal solution.

Exercise 1.4.4 (DPV 7.8). You are given the following points in the plane:

(1, 3), (2, 5), (3, 7), (5, 11), (7, 14), (8, 15), (10, 19).

You want to find a line y = ax+ b that approximately passes through these points
(no line is a perfect fit). Write a linear program (you don’t need to solve it) to find
the line that minimizes the maximum absolute error,

max
1≤i≤7

|axi + b− yi|.

Hint: if z ≥ |w| then z ≥ w and z ≥ −w.
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The Simplex algorithm
(2 hrs - Thu, Apr 18, 2024)

2.1 The simplex algorithm
The simplex algorithm provides a method to reduce the number of vertices to visit
in order to find the optimum. On each iteration, simplex has two tasks:

(1) Check whether the current vertex is optimal (and if so, halt).
(2) Determine where to move next.

As we will see, both tasks are easy if the vertex happens to be at the origin.
And if the vertex is elsewhere, we will transform the coordinate system to move it
to the origin!

2.1.1 A worked example. A wooden toy factory produces cars and trains. The
demand of cars is 50 units per month, while that of trains in 80 units. Overall, the
factory cannot produce more than 100 items per month. Every car is sold for 2
and every train for 4 money units. Find the production plan that maximizes the
revenues.

The problem is:

max 2x1 + 4x2

subject to

x1 ≤ 50

x2 ≤ 80

x1 + x2 ≤ 100

x1 ≥ 0

x2 ≥ 0

and graphically we find the optimal solution at x1 = 20, x2 = 80 with an optimal
value for the objective of 360.

9
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The first step transforms the original problem into a more complex one, adding
new variables. z, an unconstrained variable, is added to the objective function
which is transformed into

z = 2x1 + 4x2

and each ≤ constraint is transformed into an equation by means of an additional
“slack” variable:

x1 +s1 = 50

+x2 + s2 = 80

x1 + x2 +s3 = 100

with
x1, x2, s1, s2, s3 ≥ 0

We transformed a system of linear inequalities into a system of equations. A solution
to this system is, obviously, x1 = x2 = 0 and s1 = 50, s2 = 80, s3 = 100, that is
(0, 0, 50, 80, 100). Variables set at 0 are called non-basic, the others are called basic.
Geometrically, this represents the origin. Plugging this solution into the objective
equation gives z = 0.

Is this optimal? Likely, it is not, because in the objective the non-basic variables
have a positive coefficient. It is possible that increasing one of them (they can only
take positive values), will increase the value of z. We need to verify this is indeed
possible.

Say that we increase x2 to 0 + δ since its coefficient is larger than that of x1.
We have

z = 2 · 0 + 4δ
0 +s1 = 50

δ + s2 = 80

0 + δ +s3 = 100

From the second equation we get s2 = 80−δ and from the third we get s3 = 100−δ.
The solution is then (0, δ, 50, 80 − δ, 100 − δ). Since all variables must be non-
negative δ must be such that 80 − δ ≥ 0 and 100 − δ ≥ 0. This implies δ ≤ 80
so 80 is the maximum increase for x2. If we set x2 = 80 we have x1 = s2 = 0
and x2 = 80, s1 = 50, s3 = 20. In practice, what we have done is moving s2 from
basic to non-basic, and x2 from non-basic to basic. Algebraically, we have used
x2 = 80− s2. Plugging this into the original problem gets

z = 2x1 + 4(80− s2)

x1 +s1 = 50

+x2 + s2 = 80

x1 + 80− s2 +s3 = 100

that is
z = 320 + 2x1 − 4s2

x1 +s1 = 50

+x2 + s2 = 80

x1 − s2 +s3 = 20

Note that in going from one problem to the next we preserved three facts:

(1) each constraint contains a variable that appears only there and has coefficient
1 (they were s1, s2, s3 and now are s1, x2, s3)
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(2) the RHS of the constraints are non-negative

(3) the candidate basic variables do not appear in the objective.

This means the change of variable is actually a change of the origin of the reference
system. We are still at (0, 0), but in the new reference where the axes are x1 and
s2. The complete solution is (0, 80, 50, 0, 20).

If we had chosen x1 that would have moved us to another vertex of the polytope
and would have followed another path.

We are again with an LP problem as we were at the beginning but now in the
objective function one non-basic variable has a negative coefficient. Since any non-
basic variable has a zero value and can change only to positive values, any change
in that variable would decrease the value of z and therefore changing that variable
would not result in an improvement.

We then try changing x1 from 0 to δ:

z = 320 + 2δ − 4s2

δ +s1 = 50

+x2 + s2 = 80

δ − s2 +s3 = 20

whence we get s1 = 50 − δ and s3 = 20 − δ. Both must be non-negative so the
maximum increase is δ = 20 and x1 = 20 + s2 − s3. Substituting back into the
problem gives

z = 360 + 2s2 − 2s3 − 4s2 = 360− 2s2 − 2s3

+s1 + s2 −s3 = 30

+x2 + s2 = 80

x1 − s2 +s3 = 20

The solution at the origin of the last problem is (20, 80, 30, 0, 0). Is this optimal? It
is, because now all the non-basic variables have negative coefficients and therefore
increasing them would decrease the objective, something we don’t want.

2.1.2 Some implementation issues. While running, the simplex algorithm
might encounter some issues.

• It may be that there is no bound for δ so that the objective can be brought to
+∞. Then the algorithm stops returning “unbounded solution”.

• If may be that an initial solution is not immediately available. A common
method is to create an artificial problem which includes the constraints and
the objective of the given problem. The artificial problem has an easy to find
starting vertex which might not be feasible for the original problem. But with
a careful choice of the coefficient of the artificial variables in the artificial ob-
jective the simplex will “move” from the solution of the artificial problem to
the optimal solution of the original problem.
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For example,

min 4x1 + x2

subject to

3x1 + x2 = 3

4x1 + 3x2 ≥ 6

x1 + 2x2 ≤ 3

x1, x2 ≥ 0

Here, x1 = x2 = 0 is not feasible and we need a feasible solution to start the
simplex. We could transform the problem into standard form but that wouldn’t
change the issue. We then add an artificial variable a1 to get 3x1+x2+a1 = 3
with the constraint a1 ≥ 0. The problem has now changed and its feasible
solutions are not necessarily feasible for the original problem. They would be
if a1 = 0. This is obtained by adding a1 to the objective multiplied by M ,
where M is a very large number: min 4x1 + x2 +Ma1. The initial solution to
this problem is x1 = x2 = 0, a1 = 3. If we run the simplex for this problem it
will end up to with a1 = 0 (to minimize the objective) and as a byproduct will
return a feasible solution to the original problem.

By the way, the same idea is used to deal with negative right-hand sides: for
example, the inequality 4x1 + 3x2 ≥ 6 is transformed into 4x1 + 3x2 − s1 = 6,
s1 ≥ 0. s1 is called a “surplus” variable. The issue with surplus variables is
that they caǹı’t be basic variables because they would get a negative value (in
this case, s1 = −6). To fix this, another artificial variable is added, a2 ≥ 0, to
get 4x1 + 3x2 − s1 + a2 = 6. After these operations, the problem is

min 4x1 + x2 +Ma1 +Ma2

subject to

3x1 + x2 + a1 = 3

4x1 + 3x2 − s1 + a2 = 6

x1 + 2x2 + s2 = 3

x1, x2, s1, s2, a1, a2 ≥ 0

but it needs a final adjustment. In fact, in the standard simplex algorithm, the
starting point has no basic variables in the objective. We then need to remove
a1 and a2 from the objective. This is done using the first and second equations:

4x1 + x2 +Ma1 +Ma2 = 4x1 + x2+

+M(3− 3x1 − x2) +M(6− 4x1 − 3x2 + s1)

= (4− 7M)x1 + (1− 4M)x2 +Ms1 + 9M

and the problem finally becomes

min(4− 7M)x1 + (1− 4M)x2 +Ms1 + 9M

subject to

3x1 + x2 + a1 = 3
4x1 + 3x2 − s1 + a2 = 6
x1 + 2x2 + s2 = 3

x1, x2, s1, s2, a1, a2 ≥ 0
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Now a feasible solution is x1 = x2 = s1 = 0 and a1 = 3, a2 = 6, s2 = 3. From
this, the simplex algorithm would find the optimal solution, x1 = 0.6, x2 = 1.2.

• There can be cases (although rare) in which a vertex of a polytope is the
endpoint of more than n edges, say m > n edges. This is the degenerate case.
In this case the algorithm might fall into a cycle, substituting one of the n
constraints with one of the remaining m − n > 0. And back again, . . . This is
might be solved by rules for choosing variables to move from basic to non-basic
and vice versa.

2.1.3 Time of execution. The simplex algorithm shows that a linear program
can always be solved in finite time, and in fact in time that is at most exponential
in the number of variables. This is because each iteration takes polynomial time
and moves to a new vertex, and if there are m inequalities and n variables there
can be at most

(
m
n

)
vertices. We previously showed that this is O(2m+n).

Actually, in the 1970s it has been shown that for all the known variants of the
simplex method (which differ in the way they choose the vertex to move to, when
there is more than possible choice) there are examples of linear programs on which
the algorithm takes exponential time.

Later, it has been proved that these “worst cases” are actually sufficiently
rare so that, on average, the simplex algorithm is usually very fast, even on linear
programs with tens or hundreds of thousands of variables and constraints.
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Duality
(2 hrs - Fri, Apr 19, 2024)

3.1 A numerical example
We can approach the problem of the optimality of the solution of the original
problem from another point of view. The problem is:

max 2x1 + 4x2

subject to

x1 ≤ 50

x2 ≤ 80

x1 + x2 ≤ 100

x1 ≥ 0

x2 ≥ 0

and graphically we found the optimal solution at x1 = 20, x2 = 80 with an optimal
value for the objective of 360. From x1 ≤ 50 and x2 ≤ 80, multiplying the first by
2 and the second by 4 we get 2x1 ≤ 100 and 4x2 ≤ 320. Adding the two together
we get

2x1 + 4x2 ≤ 420

which gives an upper bound, even if not very tight. However, there is a better
choice of the factors that shows the solution is indeed optimal. If we multiply the
second and the third inequality by 2 and add them together we get

2x1 + 4x2 ≤ 360

and this shows that (20, 80) is indeed optimal. Is there a way to get the best
coefficients?

15
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Say we assign every constraint a non-negative multiplicative coefficient, y1, y2
and y3. We have

y1x1 ≤ 50y1

y2x2 ≤ 80y2

y3(x1 + x2) ≤ 100y3

(we choose non-negative numbers because we need to keep the sign of the inequal-
ities). Adding the three we get

x1(y1 + y3) + x2(y2 + y3) ≤ 50y1 + 80y2 + 100y3.

We want to build the best upper bound to 2x1+4x2 so any expression like c1x1+c2x2

where c1 ≥ 2 and c2 ≥ 4 on the left-hand side would provide an upper bound,
because all variables are non-negative, and we would like the upper bound, the
right-hand side, to be as small as possible. Then, we want to solve the following
problem:

min 50y1 + 80y2 + 100y3

subject to

y1 + y3 ≥ 2

y2 + y3 ≥ 4

y1 ≥ 0

y2 ≥ 0

y3 ≥ 0

The link between the last problem and the first one is much clearer if we write them
in matrix form. The original problem is

max cTx

subject to

Ax ≤ b

x ≥ 0

where

c =

[
2
4

]
, A =

1 0
0 1
1 1

 ,b =

 50
80
100

 .

and, with the same objects, the second one is

minyTb

subject to

yTA ≥ cT

y ≥ 0

which is another LP problem. This is written in terms of rows, instead of columns,
so it is an LP problem in the y’s, which are rows and can be identified as vectors
in the dual space of the x’s. This is the reason why the second problem is called
the dual of the first, which, in turn, is called the primal problem.

The optimal solution to the dual is (0, 2, 2), and the corresponding objective is
360.
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3.2 Exercises
Exercise 3.2.1 (DPV 7.11). Write the dual to the following linear program.

maxx+ y

subject to

2x+ y ≤ 3

x+ 3y ≤ 5

x, y ≥ 0.

Find the optimal solutions to both primal and dual LPs.

Exercise 3.2.2. Write the dual to the following linear program.

max−100y1 + 480y2 + 800y3

subject to

−y1 + 4y2 + 2y3 ≤ 2

−4y1 + 20y2 + 40y3 ≤ 11

yi ≥ 0 i = 1, 2, 3

Find the optimal solutions to the dual.
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More on Duality
(3 hrs - Tue, Apr 23, 2024)

4.1 Duality theory
Given an LP problem (primal)

max cTx

subject to

Ax ≤ b

x ≥ 0

where x, c ∈ Rn, b ∈ Rm and A is an m× n matrix, its dual is

minyTb

subject to

yTA ≥ cT

y ≥ 0

where y ∈ Rm. Note that each decision variable in the primal problem corresponds
to a constraint in the dual problem, and each constraint in the primal problem
corresponds to a variable in the dual problem.

In case we have equations instead of inequalities, like aTx = b, then we can
transform this into two inequalities:

aTx ≥ b

aTx ≤ b

which in turn transforms into

aTx ≥ b

−aTx ≥ −b.

19



20 Chapter 4. More on Duality (3 hrs - Tue, Apr 23, 2024)

We multiply each of the two ≥ constraint by two non-negative variables, say y1 and
y2. Then we have

y1a
Tx ≥ y1b

−y2a
Tx ≥ −y2b.

and adding the two together we get

(y1 − y2)a
Tx ≥ (y1 − y2)b

which is an inequality with the ≥ sign multiplied by an unsigned variable y1 − y2.

Theorem 4.1 (Weak duality). For any feasible solutions x and y to primal and
dual linear programs, we have cTx ≤ yTb.

Proof. If y is a feasible solution of the dual, then yTA ≥ cT . Because x ≥ 0 we
can right-multiply the previous inequality by x to get

yTAx ≥ cTx.

If x is a feasible solution of the primal, then Ax ≤ b. Similarly, because y ≥ 0, we
can left-multiply the last inequality by yT to get

yTAx ≤ yTb.

Combining the two inequalities we get

cTx ≤ yTAx ≤ yTb.

Theorem 4.2 (Certificate of Optimality). If x and y are feasible solutions of the
primal and dual and cTx = yTb, then x and y must be optimal solutions to the
primal and dual.

There is another interesting consequence of weak duality that relates infinite-
ness of optimal values in the primal/dual with feasibility of the dual/primal. Let
y be a feasible solution of the dual. By weak duality, we have cTx ≤ yTb for all
feasible x. If the optimal value in the primal is ∞, then ∞ ≤ yTb. This is not
possible, so the dual cannot have a feasible solution.

Theorem 4.3. If the optimal value in the primal is ∞, then the dual must be
infeasible. If the optimal value of the dual is −∞, then the primal must be infeasible.

Note that the converse does not hold. So, for example, if the dual is infeasible,
then the primal might either be unbounded or infeasible as well.

Theorem 4.1 leaves the door open to the possibility that the optimal solution
to the dual is strictly greater than the optimal solution to the primal. Actually,
that fact that the optimal value of the objective is equal in both the primal and
the dual is due to the next result whose proof is beyond the scope of this course.

Theorem 4.4 (Strong Duality). The dual has an optimal solution if and only if
the primal does. If x∗ and y∗ are optimal solutions to the primal and dual, then
cTx∗ = (y∗)Tb.
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4.2 Sensitivity analysis
Suppose that the resource quantities b change by a small amount ∆ ∈ Rm. Then,
the primal and dual become

max cTx

subject to

Ax ≤ b+∆

x ≥ 0

and

minyT (b+∆)

subject to

yTA ≥ cT

y ≥ 0

Let the optimal value of the problem in both the primal and the dual be z(∆), so
that z(0) is the optimal value of the original problem. Suppose that the optimal
solution to the dual is unique and that, for sufficiently small ∆, the optimal solution
to the dual does not change. In this case the optimal value changes by z(∆)−z(0) =
yT∆. By strong duality, the optimal solution to the primal changes by the same
amount, yT∆. To summarize, a small change in the level of the resources in the
primal induces a change in the optimal value which is “scaled” by the dual solution.
Every dual optimal variable scales the corresponding variation in the objective of
the primal.

In the example problem, suppose that the production constraint, buying a new
machine, could increase the weekly production by a certain amount δ. Are we going
to spend on this to increase our revenues?

The above reasoning tells us that the change from 100 to 100+δ in the working
hours constraint would get a variation in revenues of 2δ. Now the question is: what
is the cost of the machine? If it’s less than 2δ, then the operation is profitable,
otherwise, it is not. This is why the dual optimal solutions are sometimes called
“shadow prices”: the LP problem implies that every “additional working hour” has
a price of 2. This might or might not be the real price of it, but it is a price one
must consider when making choices.

The same idea does not apply to the first constraint, that about cars. This is
because increasing the demand for cars does not change the optimal solution. In
fact, at the optimal solution they already have an excess in the demand so there is
no point in further increasing it. Consequently, the shadow price associated with
cars is 0.

This property is general, as the following theorem guarantees.

Theorem 4.5 (Complementary Slackness). Let x and y be feasible solutions to
symmetric form primal and dual linear programs. Then, x and y are optimal
solutions to the primal and dual if and only if yT (b−Ax) = 0 and (yTA−cT )x = 0.

Proof. Feasibility implies that yT (b−Ax) ≥ 0 and (yTA− cT )x ≥ 0.
⇒ Suppose that x and y are optimal. Adding the two inequalities gets

yT (b−Ax) + (yTA− cT )x = yTb− yTAx+ yTAx− cTx = yTb− cTx ≥ 0.



22 Chapter 4. More on Duality (3 hrs - Tue, Apr 23, 2024)

However, x and y are also supposed to be optimal, not just feasible. Then, by
strong duality (Th. 4.4),

yTb = cTx ⇒ yTb− cTx = 0.

Going back to yT (b−Ax) and (yTA−cT )x, their sum is 0. Since yT (b−Ax) ≥ 0
and (yTA− cT )x ≥ 0, they must be both equal to 0.

⇐ Suppose that yT (b−Ax) = 0 and (yTA− cT )x = 0. Then

yTb− cTx = 0 ⇒ yTb = cTx

and so they are optimal by theorem 4.2

4.3 Exercises
Exercise 4.3.1 (DPV 7.12). For the linear program

maxx1 − 2x3

subject to

x1 − x2 ≤ 1

2x2 − x3 ≤ 1

x ≥ 0.

prove that the solution (x1, x2, x3) = (3/2, 1/2, 0) is optimal.

Exercise 4.3.2. Consider the following problem:

maxx1 + 2x2 + 4x3

subject to

x1 + 3x2 ≤ 8

2x2 + x3 ≤ 7

3x1 + x3 ≤ 6

x ≥ 0.

Using complementary slackness equations (for both the primal and the dual), find
whether

x∗ =

 1
2
3

 and x∗∗ =

 0
0.5
6


are optimal or not.

Exercise 4.3.3. Consider the linear program

maxx1 − 3x2 + 3x3

subject to

2x1 − x2 + x3 ≤ 4

−4x1 + 3x2 ≤ 2

3x1 − 2x2 − x3 ≤ 5

xi ≥ 0, i = 1, 2, 3

(1) Write the dual program

(2) Is the primal solution x∗ = (0, 0, 4) optimal? Explain your answer.
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Exercises
(3 hrs - Tue, Apr 30, 2024)

5.1 Two Exercises from DPV
Exercise 5.1.1 (DPV 7.25). The dual of maximum flow. Consider the following
network with edge capacities.

S

A

B

T

1

3

1

2

1

a Write the problem of finding the maximum flow from S to T as a linear program.

b Write down the dual of this linear program. There should be a dual variable
for each edge of the network and for each vertex other than S, T .

Now we’ll solve the same problem in full generality. Recall the linear program for
a general maximum flow problem.

c Write down the dual of this general flow LP, using a variable ye for each edge
and xu for each vertex u ̸= s, t.

d Show that any solution to the general dual LP must satisfy the following prop-
erty: for any directed path from s to t in the network, the sum of the ye values
along the path must be at least 1.

e What are the intuitive meanings of the dual variables? Show that any s-t cut in
the network can be translated into a dual feasible solution whose cost is exactly
the capacity of that cut. (Hint: think of binary variables.)

23
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Exercise 5.1.2 (DPV 6.3). Yuckdonald’s is considering opening a series of restau-
rants along Quaint Valley Highway (QVH). The n possible locations are along a
straight line, and the distances of these locations from the start of QVH are, in
miles and in increasing order, {mi}ni=1. The constraints are as follows:

• At each location, Yuckdonald’s may open at most one restaurant. The expected
profit from opening a restaurant at location i is pi , where pi > 0 and i =
1, 2, . . . , n.

• Any two restaurants should be at least k miles apart, where k is a positive
integer.

Give an efficient algorithm to compute the maximum expected total profit subject
to the given constraints.
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Answers

1.4.1 The decision variables are the quantities transported from each production
site to each consuming site: xKN , xKC , xMN , xMC . The problem is

min 2xKN + 3xKC + 4xMN + xMC

subject to

xKN + xMN ≥ 10

xKC + xMC ≥ 13

xKN + xKC ≤ 15

xMN + xMC ≤ 8

x ≥ 0.

and its optimal solution is xKN = 10, xKC = 5, xMN = 0, xMC = 8.

1.4.2 The program is

maxR+ 1.5S

subject to

R+ S ≤ 3000

R ≥ 2S

R, S ≥ 0

and the feasible set is the triangle with vertices O = (0, 0), A = (2000, 1000) and
B = (3000, 0). The optimal value is 3500 at A.

1.4.3 Since a× 0 + b× 0 = 0 ≤ 1 the feasible set always contains (0, 0) and the
program is never infeasible, for any a and b.

If a = b = 0 all (x, y) in the first quadrant are feasible and the program is
unbounded.

If b = 0 and a > 0 then the feasible set is the vertical stripe {(x, y) : 0 ≤ x ≤
1/a, y ≥ 0} and the program is unbounded. If b = 0 and a < 0 then the feasible set
is the first quadrant, and the program is still unbounded.

Similarly, for a = 0 and b ≶ 0 the program is unbounded.

25
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If a, b > 0, then the feasible set is a triangle with vertices (0, 0), A = (1/a, 0)
and B = (0, 1/b). If a ̸= b, then the program has a finite and unique solution on A
or B. If a = b the program has infinitely many finite solutions: all the points on
the segment AB.

If a < 0, b > 0, any point (t, 0) where t > 0 is a feasible solution and the
objective is clearly unbounded. Similarly for a > 0, b < 0 with the points (0, s),
s > 0. If both a < 0 and b < 0 the feasible set is the first quadrant and the program
is unbounded.

1.4.4 Using the hint and setting z the quantity to minimize we have

z ≥ axi + b− yi ∀i
z ≥ −axi − b+ yi ∀i.

Because one of the two right-hand sides is positive, z is always greater than the
maximum of all absolute value of errors. Minimizing it we find the actual max.

The solution is

y =
12

7
x+

13

7
.

3.2.1 The optimal solution to the primal is (4/5, 7/5) with objective equal to
11/5. The dual program is

min 3z + 5w

subject to

2z + w ≥ 1

z + 3w ≥ 1

z, w ≥ 0.

and its optimal solution is (2/5, 1/5) with optimal value equal to 11/5, obviously
because of the Strong Duality Theorem.

3.2.2 The dual program is

min 2x1 + 11x2

subject to

x1 + 4x2 ≤ 100

4x1 + 20x2 ≥ 480

2x1 + 40x2 ≥ 800

x1, x2 ≥ 0.

and its optimal solution is (20, 20) with optimal value equal to 260.

4.3.1 To prove the statement, we write the dual:

min y1 + y2

subject to

y1 ≥ 1

−y1 + 2y2 ≥ 0

−y2 ≥ −2.

y ≥ 0.

The feasible set is a triangle whose vertices are A = (1, 1/2), B = (1, 2) and
C = (4, 2). The objective is minimum at A and equals 3/2. Since this is the dual
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program, by the duality theorem the primal is optimal and its optimal value is
3/2. The value of the primal objective at (x1, x2, x3) = (3/2, 1/2, 0) is 3/2 and is
therefore optimal.

4.3.2 The complementary slackness equations for both the primal and the dual
are

y1(x1 + 3x2 − 8) = 0

y2(2x2 + x3 − 7) = 0

y3(3x1 + x3 − 6) = 0

x1(y1 + 3y3 − 1) = 0

x2(3y1 + 2y2 − 2) = 0

x3(y2 + y3 − 4) = 0.

At x∗, the first equation implies y1 = 0. Substituting this into the fourth, fifth
and sixth equations gives y3 = 1/3, y2 = 1 and y2 + y3 = 4, which is not feasible.
Then, by the complementary slackness theorem, x∗ is not an optimal solution.

At x∗∗, the first equation still implies y1 = 0. The fourth equation is automat-
ically satisfied and the fifth and sixth equations give y2 = 1 and y3 = 3. Thus,

y∗∗ =

 0
1
3


is a feasible solution to the dual and, again by the complementary slackness theorem,
x∗∗ is an optimal solution.

The optimal value of the objective in both the primal and the dual is 25.

4.3.3 The dual program is

min 4y1 + 2y2 + 5y3

subject to

2y1 − 4y2 + 3y3 ≥ 1

−y1 + 3y2 − 2y3 ≥ −3

y1 − y3 ≥ 3

yi ≥ 0, i = 1, 2, 3

The primal solution (0, 0, 4) has an objective value of 12. In addition, it has both
the second and the third constraints not binding. By complementary slackness,
this implies y2 = 0 and y3 = 0. Solving the dual problem with these additional
constraints gives

2y1 ≥ 1,−y1 ≥ −3, y1 ≥ 3

whose only solution is y1 = 3. Thus, the dual solution corresponding to the primal
(0, 0, 4) is (3, 0, 0) and at (3, 0, 0) the dual objective is 12. By the strong duality
theorem, this is indeed the optimal solution to both problems.

5.1.1 Let fsa represent the flow from node s to node a, etc.
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a The maximum flow from S to T is the solution to

max fsa + fsb

subject to

fsa ≤ 1

fsb ≤ 3

fab ≤ 1

fat ≤ 2

fbt ≤ 1

fsa − fab − fat = 0

fsb + fab − fbt = 0

fsa, fsb, fab, fat, fbt ≥ 0

b Let µsa be the dual variable associated with the constraint about the capacity
of edge SA, etc., and let νa be the dual variable associated with the constraint
about the conservation law at A. The dual linear program is

minµsa + 3µsb + µab + 2µat + µbt

subject to

µsa + νa ≥ 1

µsb + νb ≥ 1

µab − νa + νb ≥ 0

µat − νa ≥ 0

µbt − νb ≥ 0

µsa, µsb, µab, µat, µbt ≥ 0

νa, νb unresticted in sign

c If we use ye for each edge and xu for each vertex u ̸= s, t, the general dual
problem is

min
∑

(u,v)∈E

cuvyuv

subject to

yuv − xu + xv ≥ 0 ∀(u, v) ∈ E, u ̸= s, v ̸= t

ysv + xv ≥ 1 ∀(s, v) ∈ E

yut − xu ≥ 0 ∀(u, t) ∈ E

yuv ≥ 0 ∀(u, v) ∈ E

xu unresticted in sign ∀u ∈ V

d Consider a given path from s to t. Adding the three constraints for the relevant
edges we see that on the right-hand sides the xu’s cancel out and we have∑

along the path

yuv ≥ 1

e The y’s can be interpreted as binary variables, equal to 1 if the edge is on the
cut, 0 otherwise. The x’s are also binary variables, equal to 1 if they are with
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s in the cut, and 0 otherwise. Every constraint is satisfied. The objective sums
only the capacities of the edges on the cut.

Another approach. The whole matter of the max flow–min cut relation can be
approached from a different point of view.

Consider the graph and the set P of all simple paths from s to t. Each p ∈ P
is a path along which one can send part of the flow. Let xp be the flow routed
along the path p. It can be proved that the problem of finding the maximum flow
is the same as the problem of maximizing the sum of the xp for all p ∈ P , subject
to the constraint that the flow does not exceed the capacity of all the edges along
the path:

max
∑
p∈P

xp

subject to∑
p∈P,(u,v)∈p

xp ≤ cuv ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ P

This is surely at risk of being not efficient because the number pf paths grows
exponentially. However, the point of this approach is essentially theoretical, that
is, to prove something can be done (or is true), not to say that it’s to be done in
this way.

In the graph of the exercise, there are three simple paths, S → A → T , S →
A → B → T and S → B → T . Along every path one can route at most 1. So in
this example we want to

maxxSAT + xSABT + xSBT

subject to

xSAT + xSABT ≤ cSA = 1

xSBT ≤ cSB = 3

xSABT ≤ cAB = 1

xSAT ≤ cAT = 2

xSABT + xSBT ≤ cBT = 1

xSAT , xSABT , xSBT ≥ 0

In matrix form we have

max cTx

subject to

Ax ≤ b

x ≥ 0

where

c =

11
1

 ,x =

 xSAT

xSABT

xSBT

 , A =


1 0 1
0 1 0
0 0 1
1 0 0
0 1 1

 ,b =


1
3
1
2
1

 .
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The dual of the previous problem has one variable per edge (that is , per constraint
in the primal) and one constraint per variable in the objective (the three simple
paths):

minyTb

subject to

yTA ≥ cT

y ≥ 0

or, in extended form,

min ySA + 3ySB + yAB + 2yAT + yBT

subject to

ySA + yAT ≥ 1

ySB + yBT ≥ 1

ySA + yAB + yAT ≥ 1

ySA, ySB , yAB , yAT , yBT ≥ 0

where a feasible aolution is ySA = yBT = 1, ySB = yAB = yAT = 0.

5.1.2 We can tackle the problem via dynamic programming, where the i-th sub-
problem is obtained by restricting the attention to the first i locations and expected
profits.

Let P [i] be the maximum profit we can expect from a solution that is only
allowed to use locations 1, . . . , i. Clearly, P [1] = p1 and the value we are interested
in is P [n]. We now claim the following relation:

P [i] = max

{
P [i− 1], pi + max

j:mi−mj≥k
P [j]

}
Indeed, if we are given the option to use location i, we have two choices: either we
don’t use it, so the best we can do is the best we can do using locations 1, . . . , i−1,
or we do, which gives us profit pi plus the best we can do if we only use locations
j such that mi −mj ≥ k.

The running time is O(n2) since to compute the outer max we need to compute
the inner max when i = 1, then when i = 2, and so on until i = n.
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